Affiliation:
1. Institute for Applied Materials ‐ Microstructure Modelling and Simulation (IAM‐MMS) Karlsruhe Institute of Technology (KIT) Strasse am Forum 7 76131 Karlsruhe Germany
2. Institute of Digital Materials Science Karlsruhe University of Applied Sciences Moltkestrasse 30 76133 Karlsruhe Germany
Abstract
AbstractA droplet deposited on a solid substrate leads to the wetting phenomenon. A natural observation is the lotus effect, known for its superhydrophobicity. This special feature is engendered by the structured microstructure of the lotus leaf, namely, surface heterogeneity, as explained by the quintessential Cassie–Wenzel theory (CWT). In this work, recent designs of functional substrates are overviewed based on the CWT via manipulating the contact area between the liquid and the solid substrate as well as the intrinsic Young's contact angle. Moreover, the limitation of the CWT is discussed. When the droplet size is comparable to the surface heterogeneity, anisotropic wetting morphology often appears, which is beyond the scope of the Cassie–Wenzel work. In this case, several recent studies addressing the anisotropic wetting effect on chemically and mechanically patterned substrates are elucidated. Surface designs for anisotropic wetting morphologies are summarized with respect to the shape and the arrangement of the surface heterogeneity, the droplet volume, the deposition position of the droplet, as well as the mean curvature of the surface heterogeneity. A thermodynamic interpretation for the wetting effect and the corresponding open questions are presented at the end.
Funder
Helmholtz-Gemeinschaft
Deutsche Forschungsgemeinschaft
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献