Modeling and optimization of antibacterial effect of lichen‐associated bacteria, Bacillus subtilis KSRLAB3 strain against marine fouling bacteria, Vibrio alginolyticus

Author:

Subbaiyan Rubavathi1,Ganesan Ayyappadasan1

Affiliation:

1. Department of Biotechnology K. S. Rangasamy College of Technology Tiruchengode Tamil Nadu India

Abstract

AbstractOne of the most commonly occurring bacteria, Bacillus subtilis, can produce a wide variety of secondary metabolites. In this study, the antimicrobial effect of B. subtilis KSRLAB3 against Vibrio alginolyticus was optimized using the Plackett–Burman design (PBD) method, response surface methodology (RSM), and genetic algorithm (GA). Initially, the effects of carbon source, nitrogen source, NaCl concentration, pH, temperature, and incubation time on antimicrobial effects were studied. Among the carbon and nitrogen sources investigated, mannose and peptone elicited maximum antimicrobial effect. Using PBD, the most significant variables that influence the antimicrobial effect were identified, including incubation time, peptone concentration, and temperature. The optimum conditions required for attaining maximum antimicrobial effect was identified using the RSM‐GA hybrid method, and the optimum condition includes 49.999 h of incubation time, 4.39 g/L of peptone concentration, and 27.629°C of incubation temperature. The confirmatory experiments performed around the optimum condition showed a zone of inhibition of 35 ± 0.52 mm. Methanolic extract also proved the presence of antibacterial lipopeptide surfactin. Therefore, the RSM‐GA hybrid method was successfully used in this study to model the antimicrobial effect of B. subtilis KSRLAB3 against V. alginolyticus. The effective inhibition of V. alginolyticus can be investigated further for the development of antifouling coatings.

Publisher

Wiley

Subject

Process Chemistry and Technology,Drug Discovery,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,General Medicine,Bioengineering,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3