Affiliation:
1. Programa de Pós‐Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
2. Instituto de Química Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
3. Laboratório de Biotecnologia Universidade Regional Integrada do Alto Uruguai e das Missões—URI Erechim RS Brazil
Abstract
AbstractDrug biotransformation studies emerges as an alternative to pharmacological investigations of metabolites, development of new drug candidates with reduced investment and most efficient production. The present study aims to evaluate the capacity of biotransformation of rifampicin by the filamentous fungus Aspergillus niger ATCC 9029. After incubation for 312 h, the drug was metabolized to two molecules: an isomer (m/z 455) and the rifampicin quinone (m/z 821). The monitoring of metabolite formation was performed by high‐performance liquid chromatography, followed by their identification through ultra‐high‐performance liquid chromatography coupled to tandem mass spectrometer. In vitro antimicrobial activity of the proposed metabolites was evaluated against Staphylococus aureus microorganism, resulting in the loss of inhibitory activity when compared with the standards, with minimum inhibitory concentration of 7.5 μg/ml. The significant biotransformation power of the ATCC 9029 strain of A. niger was confirmed in this study, making this strain a candidate for pilot studies in fermentation tanks for the enzymatic metabolization of the antimicrobial rifampicin. The unprecedented result allows us to conclude that the prospect of new biotransforming strains in species of anemophilic fungi is a promising choice.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior