Functional trait‐based restoration alters nutrient cycling and invasion rates in Hawaiian lowland wet forest

Author:

DiManno Nicole1ORCID,Ostertag Rebecca1,Uowolo Amanda2,Durham Amy1,Blakemore Kaikea1,Cordell Susan2,Vitousek Peter3

Affiliation:

1. Department of Biology University of Hawaiʻi at Hilo Hilo Hawaii USA

2. Institute of Pacific Islands Forestry, USDA Forest Service Hilo Hawaii USA

3. Department of Biology Stanford University Stanford California USA

Abstract

AbstractMany degraded ecosystems have altered nutrient dynamics due to invaders’ possessing a suite of traits that allow them to both outcompete native species and alter the environment. In ecosystems where invasive species have increased nutrient turnover rates, it can be difficult to reduce nutrient availability. This study examined whether a functional trait‐based restoration approach involving the planting of species with conservative nutrient‐use traits could slow rates of nutrient cycling and consequently reduce rates of invasion. We examined a functional trait restoration initiative in a heavily invaded lowland wet forest site in Hilo, Hawaiʻi. Native and introduced species were chosen to create four experimental hybrid forest communities, in comparison to the invaded forest, with a factorial design in which communities varied in rates of carbon turnover (slow or moderate [SLOW, MOD]), and in the relationship of species in trait space (redundant or complementary [RED, COMP]). After the first 5 years, we evaluated community‐level outcomes related to nutrient cycling: carbon (C), nitrogen (N), and phosphorus (P) via litterfall, litter decomposition, and outplant productivity and rates of invasion. We found that (1) regardless of treatment, the experimental communities had low rates of nutrient cycling through litterfall relative to the invaded reference forest, (2) the MOD communities had greater nutrient release via litterfall than the SLOW communities, (3) introduced species had greater nutrient release than native species in the two MOD experimental communities, and (4) within treatments, there was a positive relationship between nutrient levels and outplant basal area, but outplant basal area was negatively associated with rates of invasion. The negative relationships among basal area and weed invasion, particularly for the two COMP treatments, suggest species existing in different parts of trait space may help confer some degree of invasion resistance. The diversification of trait space was facilitated by the use of introduced species, a new concept in Hawaiian forest management. Although challenges remain in endeavors to restore this heavily degraded ecosystem, this study provides evidence that functional trait‐based restoration approaches using carefully crafted hybrid communities can reduce rates of nutrient cycling and invasion in order to reach management goals.

Funder

NSF

Strategic Environmental Research and Development Program

Publisher

Wiley

Subject

Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3