Adaptive neural control with fast approximation for uncertain nonlinear systems: A novel composite learning approach

Author:

Xie Jianbin1,Wang Shaocong1,Dai Hao1ORCID,Jia Jinping2,Zhang Hua1

Affiliation:

1. School of Aerospace Science and Technology Xidian University Xi'an China

2. School of Mathematics and Statistics Tianshui Normal University Tianshui China

Abstract

AbstractIn existing adaptive neural control approaches, only when the regressor satisfies the persistent excitation (PE) or interval excitation (IE) conditions, the constant optimal weights of neural network (NN) can be identified, which can be used to establish uncertainties in nonlinear systems. This paper proposes a novel composite learning approach based on adaptive neural control. The focus of this approach is to make the NN approximate uncertainties in nonlinear systems quickly and accurately without identifying the constant optimal weights of the NN. Hence, the regressor does not need to satisfy the PE or IE conditions. In this paper, regressor filtering scheme is adopted to generate prediction error, and then the prediction error and tracking error simultaneously drive the update of NN weights. Under the framework of Lyapulov theory, the proposed composite learning approach can ensure that approximation error of the uncertainty and tracking error of the system states converge to an arbitrarily small neighborhood of zero exponentially. The simulation results verify the effectiveness and advantages of the proposed approach in terms of fast approximation.

Funder

Foundation of Science and Technology on Near-Surface Detection Laboratory

National Natural Science Foundation of China

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3