Affiliation:
1. School of Chemical Engineering, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation Inner Mongolia University of Technology Hohhot People's Republic of China
2. School of Resources and Environmental Engineering Inner Mongolia University of Technology Hohhot People's Republic of China
Abstract
AbstractThe rare earth element doped germanium cluster represents a fundamental nanomaterial and exhibits potential in next‐generation industrial electronic nanodevices and applied semiconductors. Herein, the cerium‐doped germanium anionic nanocluster CeGen− (n = 5–17) has been comprehensively investigated by the double hybrid density functional theory of mPW2PLYP associated with the unbiased global searching technique of artificial bee colony algorithm. The cluster's growth pattern undergoes three stages: n = 5–9 with the replaced structure, n = 10–15 with the linked structure, and n ≥ 16 forming a Ce‐encapsulated in Ge inner cage motif. The clusters' PES, IR, and Raman spectra were simulated, and their HOMO‐LUMO gap, magnetism, charge transfer, and relative stability were predicted. These theoretical values can serve as a reference for future experiments to some extent. Moreover, the special D2d symmetry cage geometry of CeGe16− leads to a higher stability and preferred energy gap, making it an ideal candidate for further studies on its aromaticity, UV–vis spectra, and chemical bonding characteristics. In summary, CeGe16− has excellent optical activity that can be potentially employed as a building block in the development of optoelectronic functional materials.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia Autonomous Region
Subject
Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献