Structural evolution and electronic properties of cerium doped germanium anionic nanocluster CeGen (n = 5–17): Theoretical investigation

Author:

Hao Chenliang1,Dong Caixia2,Yang Zhaofeng2ORCID

Affiliation:

1. School of Chemical Engineering, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation Inner Mongolia University of Technology Hohhot People's Republic of China

2. School of Resources and Environmental Engineering Inner Mongolia University of Technology Hohhot People's Republic of China

Abstract

AbstractThe rare earth element doped germanium cluster represents a fundamental nanomaterial and exhibits potential in next‐generation industrial electronic nanodevices and applied semiconductors. Herein, the cerium‐doped germanium anionic nanocluster CeGen (n = 5–17) has been comprehensively investigated by the double hybrid density functional theory of mPW2PLYP associated with the unbiased global searching technique of artificial bee colony algorithm. The cluster's growth pattern undergoes three stages: n = 5–9 with the replaced structure, n = 10–15 with the linked structure, and n ≥ 16 forming a Ce‐encapsulated in Ge inner cage motif. The clusters' PES, IR, and Raman spectra were simulated, and their HOMO‐LUMO gap, magnetism, charge transfer, and relative stability were predicted. These theoretical values can serve as a reference for future experiments to some extent. Moreover, the special D2d symmetry cage geometry of CeGe16 leads to a higher stability and preferred energy gap, making it an ideal candidate for further studies on its aromaticity, UV–vis spectra, and chemical bonding characteristics. In summary, CeGe16 has excellent optical activity that can be potentially employed as a building block in the development of optoelectronic functional materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3