Identifying the relationships between subsurface absorber defects and the characteristics of kesterite solar cells

Author:

Son Dae‐Ho12,Jeon Dong‐Hwan12,Kim Dae‐Hwan12,Kang Jin‐Kyu12,Sung Shi‐Joon12,Lee Jaebaek12,Lee Taeseon3,Enkhbayar Enkhjargal3,Kim JunHo3,Yang Kee‐Jeong12ORCID

Affiliation:

1. Division of Energy Technology, DGIST Daegu Republic of Korea

2. Research Center for Thin Film Solar Cells, DGIST Daegu Republic of Korea

3. Department of Physics Incheon National University Incheon Republic of Korea

Abstract

AbstractUnderstanding the defect characteristics that occur near the space‐charge regions (SCRs) of kesterite (CZTSSe) solar cells is important because the recombination loss at the CZTSSe/CdS interface is considered the main cause of their low efficiency. CZTSSe surfaces with different elemental compositions were formed without polishing (C00) and with polishing for 20 s (C20) and 60 s (C60). For C60, a specific region near the SCR was excessively Cu‐rich and Zn‐poor compared to C00 and C20. Various charged defects formed where the elemental variation was large. As the main deep acceptor defect energy level (Ea2) near the SCR increased, the efficiency, open‐circuit voltage deficit, and current density degraded, and this phenomenon was especially rapid for large Ea2 values. As the Ea2 near the SCR became deep, the carrier diffusion length decreased more for the CZTSSe solar cells with a low carrier mobility than for the CuInGaSe2 (CIGSe) solar cells. The large amplitude of the electrostatic potential fluctuation in the CZTSSe solar cells induced a high carrier recombination and a short carrier lifetime. Consequently, the properties of the CZTSSe solar cells were more strongly degraded by defects with deep energy levels near the SCR than those of the CIGSe solar cells.

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3