Paddy field object detection for robotic combine based on real‐time semantic segmentation algorithm

Author:

Zhu Jiajun1ORCID,Iida Michihisa1,Chen Sikai1,Cheng Shijing1,Suguri Masahiko1,Masuda Ryohei1

Affiliation:

1. Graduate School of Agriculture Kyoto University Kyoto Japan

Abstract

AbstractThe development of robotic combine for rice harvesting has garnered worldwide attention in recent years. The robotic combine is capable of running along a designated path; however, it still requires human operator supervision due to the lack of object detection sensors for safety purposes. To achieve a fully unmanned robotic combine, a real‐time paddy field object detection method is necessary. Typically, all paddy field objects are detected individually using multiple algorithms and sensors, which significantly increases the complexity and cost of the detection process. In this study, the deep learning (DL) based semantic segmentation (SS) method was employed to detect all paddy field objects simultaneously using only an RGB camera. Considering the environment of the paddy field, a new SS model called “The Robotic Combine Network (TRCNet)” was specifically designed for the robotic combine. And four state‐of‐the‐art lightweight convolutional neural networks were applied as the backbones of the TRCNet. To achieve real‐time detection, TensorRT (NVIDIA) was utilized for speeding up the prediction process. All models were trained and evaluated using paddy field images captured during the robotic combine's harvesting process. The results showed that the TRCNet can successfully detect all paddy field objects. The mean intersection over union, and frames per second (FPS) of the best two SS models were 0.823, 47.48, and 0.834, 32.44, respectively. The FPS values were obtained after speed acceleration and tested with an image size of 640 × 480 pixels on an embedded processor (Jetson TX2), enabling real‐time object detection in paddy fields for the robotic combine.

Funder

Japan Science and Technology Agency

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3