Affiliation:
1. School of Engineering The University of Edinburgh Robert Stevenson Road Edinburgh EH9 3BF United Kingdom
2. Department of Chemistry Lancaster University Lancaster, UK LA1 4YB United Kingdom
Abstract
AbstractIncorporating photo‐switches into skeletal structures of microporous materials or as guest molecules yield photo‐responsive materials for low‐energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans–cis photoisomerization of azobenzene loaded into the micropores of hypercross‐linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g−1, but this loss in CO2 uptake was not only recovered by trans–cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g−1, when compared to as‐prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo‐controlled increments in 10–20 Å micropore volume, i. e., adsorption sites and a photo‐reversible positive dipole moment. Irradiating these HCPs with visual‐range light reverted CO2 uptake to 33 cm3 g−1. This shows that it is feasible to recycle waste polystyrene into advanced materials for low‐energy carbon capture.
Subject
General Energy,General Materials Science,General Chemical Engineering,Environmental Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献