A methodology to abridge microdosimetric distributions without a significant loss of the spectral information needed for the RBE computation in carbon ion therapy

Author:

Parisi Alessio1ORCID,Beltran Chris J.1ORCID,Furutani Keith M.1ORCID

Affiliation:

1. Department of Radiation Oncology Mayo Clinic Jacksonville Florida USA

Abstract

AbstractBackgroundIn order to compute the relative biological effectiveness (RBE) of ion radiation therapy with the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM), it is necessary to process entire microdosimetric distributions. Therefore, a posteriori RBE recalculations (i.e., for a different cell line or another biological endpoint) would require whole spectral information. It is currently not practical to compute and store all this data for each clinical voxel.PurposeTo develop a methodology that allows to store a limited amount of physical information without losing accuracy in the RBE calculations nor the possibility of a posteriori RBE recalculations.MethodsComputer simulations for four monoenergetic 12C ion beams and a 12C ion spread‐out Bragg peak (SOBP) were performed to assess lineal energy distributions as a function of the depth within a water phantom. These distributions were used in combination with the MCF MKM to compute the in vitro clonogenic survival RBE for human salivary gland tumor cells (HSG cell line) and human skin fibroblasts (NB1RGB cell line). The RBE values were also calculated with a new abridged microdosimetric distribution methodology (AMDM) and compared with the reference RBE calculations using the entire distributions.ResultsThe maximum relative deviation between the RBE values computed using the entire distributions and the AMDM was 0.61% (monoenergetic beams) and 0.49% (SOBP) for the HSG cell line, while 0.45% (monoenergetic beams) and 0.26% (SOBP) for the NB1RGB cell line.ConclusionThe excellent agreement between the RBE values computed using the entire lineal energy distributions and the AMDM represents a milestone for the clinical implementation of the MCF MKM.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3