Variable RBE in proton radiotherapy: a comparative study with the predictive Mayo Clinic Florida microdosimetric kinetic model and phenomenological models of cell survival

Author:

Parisi AlessioORCID,Beltran Chris J.ORCID,Furutani Keith M.ORCID

Abstract

Abstract Objectives. (1) To examine to what extent the cell- and exposure- specific information neglected in the phenomenological proton relative biological effectiveness (RBE) models could influence the computed RBE in proton therapy. (2) To explore similarities and differences in the formalism and the results between the linear energy transfer (LET)-based phenomenological proton RBE models and the microdosimetry-based Mayo Clinic Florida microdosimetric kinetic model (MCF MKM). (3) To investigate how the relationship between the RBE and the dose-mean proton LET is affected by the proton energy spectrum and the secondary fragments. Approach. We systematically compared six selected phenomenological proton RBE models with the MCF MKM in track-segment simulations, monoenergetic proton beams in a water phantom, and two spread-out Bragg peaks. A representative comparison with in vitro data for human glioblastoma cells (U87 cell line) is also included. Main results. Marked differences were observed between the results of the phenomenological proton RBE models, as reported in previous studies. The dispersion of these models’ results was found to be comparable to the spread in the MCF MKM results obtained by varying the cell-specific parameters neglected in the phenomenological models. Furthermore, while single cell-specific correlation between RBE and the dose-mean proton LET seems reasonable above 2 keV μm−1, caution is necessary at lower LET values due to the relevant contribution of secondary fragments. The comparison with in vitro data demonstrates comparable agreement between the MCF MKM predictions and the results of the phenomenological models. Significance. The study highlights the importance of considering cell-specific characteristics and detailed radiation quality information for accurate RBE calculations in proton therapy. Furthermore, these results provide confidence in the use of the MCF MKM for clonogenic survival RBE calculations in proton therapy, offering a more mechanistic approach compared to phenomenological models.

Publisher

IOP Publishing

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3