Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses

Author:

Cao Zheng12ORCID,Gao Xiang2,Chang Yankui3,Liu Gongfa1,Pei Yuanji1

Affiliation:

1. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei China

2. Hematology & Oncology Department Hefei First People's Hospital Hefei China

3. School of Nuclear Science and Technology University of Science and Technology of China Hefei China

Abstract

AbstractPurposeTo investigate the effect of different normalization preprocesses in deep learning on the accuracy of different tissues in synthetic computed tomography (sCT) and to combine their advantages to improve the accuracy of all tissues.MethodsThe cycle‐consistent adversarial network (CycleGAN) model was used to generate sCT images from megavolt cone‐beam CT (MVCBCT) images. In this study, 2639 head MVCBCT and CT image pairs from 203 patients were collected as a training set, and 249 image pairs from 29 patients were collected as a test set. We normalized the voxel values in images to 0 to 1 or −1 to 1, using two linear and five nonlinear normalization preprocessing methods to obtain seven data sets and compared the accuracy of different tissues in different sCT obtained from training these data. Finally, to combine the advantages of different normalization preprocessing methods, we obtained sCT_Blur by cropping, stitching, and smoothing (OpenCV's cv2.medianBlur, kernel size 5) each group of sCTs and evaluated its image quality and accuracy of OARs.ResultsDifferent normalization preprocesses made sCT more accurate in different tissues. The proposed sCT_Blur took advantage of multiple normalization preprocessing methods, and all tissues are more accurate than the sCT obtained using a single conventional normalization method. Compared with other sCT images, the structural similarity of sCT_Blur versus CT was improved to 0.906 ± 0.019. The mean absolute errors of the CT numbers were reduced to 15.7 ± 4.1 HU, 23.2 ± 7.1 HU, 11.5 ± 4.1 HU, 212.8 ± 104.6 HU, 219.4 ± 35.1 HU, and 268.8 ± 88.8 HU for the oral cavity, parotid, spinal cord, cavity, mandible, and teeth, respectively.ConclusionThe proposed approach combined the advantages of several normalization preprocessing methods to improve the accuracy of all tissues in sCT images, which is promising for improving the accuracy of dose calculations based on CBCT images in adaptive radiotherapy.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3