Affiliation:
1. School of Materials Science and Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
2. School of Materials Science and Engineering Key Laboratory of Metallurgical Emission Reduction and Resources Recycling Ministry of Education Anhui University of Technology Ma'anshan Anhui 243002 P. R. China
Abstract
AbstractA Bi2O3/In2O3 heterojunction is successfully fabricated via a facile hydrothermal method using sodium bismuthate and indium nitrate as the source materials. The crystal structure, composition, micromorphology, and optical property of the Bi2O3/In2O3 heterojunction are analyzed by X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, and solid ultraviolet‐visible (UV‐vis) diffuse reflectance spectra. The Bi2O3/In2O3 heterojunction exhibits a remarkable photocatalytic degradation capacity for Rhodamine B, which is better than that of pure Bi2O3 and In2O3. The photogenerated charges separation and transfer process of the Bi2O3/In2O3 heterojunction follows a direct Z‐scheme mechanism under UV–vis light irradiation. The trapping experiment indicates that oxidative radicals including •OH, h+, and •O2− play crucial roles in the photodegradation process. The outstanding photodegradation capacity is ascribed to spatially separated charge carriers, fast‐charge transportation characteristic, and special bandgap structure of the Bi2O3/In2O3 heterojunction. The introduction of H+ and OH− ions into the reaction system promotes the formation of •OH and •O2− radicals, significantly enhancing the photodegradation rate of RhB. This study presents a new insight into the construction of the Z‐scheme Bi2O3/In2O3 heterojunction photocatalyst with potential application in wastewater treatment.
Subject
Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献