Affiliation:
1. School of Electronic Information and Artificial Intelligence Shaanxi University of Science and Technology Xi'an 710016 China
2. School of Information Science and Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
Abstract
AbstractThis paper discusses the optimization of the growth temperature and Sb/In ratio of 1 µm InSb thin films grown on GaAs substrates by molecular beam epitaxy due to the InSb materials with larger lattice constants have smaller growth windows. The results show that atomic steps can be clearly seen in InSb thin films grown at 420 °C with a Sb/In ratio of 6. The InSb material grown under this condition has the smallest FWHM, indicating the best crystal quality. At the same time, the highest electron mobility measured at room temperature is 38860 cm2 V−1 s−1. The transport properties and crystal quality of InSb/AlxIn1‐xSb heterostructures corresponding to different Al compositions are also studied. The results show that as the Al component increases, dislocation scattering caused by lattice mismatch affects the electron mobility of the channel layer. The highest electron mobility of InSb/AlxIn1‐xSb heterostructures obtained is 18900 cm2 V−1 s−1 at room temperature.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献