Affiliation:
1. Department of Oceanography University of Hawaiʻi at Mānoa Honolulu Hawaiʻi USA
2. Pacific Biosciences Research Center University of Hawaiʻi at Mānoa Honolulu Hawaiʻi USA
3. Environmental Sciences Palau Community College Koror Palau
4. Center for Pacific Islands Studies University of Hawaiʻi at Mānoa Honolulu Hawaiʻi USA
5. Natural Resources and Environmental Management University of Hawaiʻi at Mānoa Honolulu Hawaiʻi USA
6. College of Natural and Applied Sciences University of Guam Mangilao Guam
Abstract
AbstractStaphylococcus aureus is an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users. S. aureus concentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk of S. aureus infections from environmental waters, S. aureus survival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measure S. aureus in turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhanced S. aureus survival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi. S. aureus was detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations of S. aureus were in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmental S. aureus concentrations. S. aureus persistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence of S. aureus communities that may increase the risk of exposure in environmental waters.Practitioner Points
Staphylococcus aureus concentrations, survival, and persistence were assessed in environmental fresh and brackish waters.
Experimental design preserved in situ conditions to measure S. aureus survival.
Higher initial S. aureus concentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.
Water turbidity and salinity were both positively associated with S. aureus concentrations and persistence.
Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk to S. aureus.
Subject
Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献