Warmer temperatures reduce the transmission of a virus in a gregarious forest insect

Author:

MacDonald Paul1,Myers Judith H.2,Cory Jenny S.1

Affiliation:

1. Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada

2. Biodiversity Centre University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractUnderstanding how climate warming will influence species interactions is a key question in ecology and predicting changes in the prevalence of disease outbreaks is particularly challenging. Ectotherms are likely to be more influenced by climatic changes as temperature governs their growth, feeding, development, and behavior. We test the hypothesis that pathogen transmission and host mortality will increase at warmer temperatures using a cyclic forest insect, the western tent caterpillar (WTC), Malacosoma californicum pluviale, and its baculovirus. The virus causes population declines at peak host density. WTC are gregarious and clustering is predicted to increase the risk of within family infection; however, how temperature influences this has not been examined. We investigated the impact of temperature on different components of the transmission process in order to pinpoint the possible mechanisms involved. In the laboratory, leaf consumption increased linearly with rising temperature between 15 and 30°C. Insects died more rapidly from virus infection as temperature increased, but this did not translate into differences in the production of viral transmission stages. To examine the influence of temperature on virus transmission, we created a temperature difference between two greenhouses containing potted red alder trees, Alnus rubra. The cooler greenhouse (mean 19.5°C) was roughly similar to ambient temperatures in the field, while the warmer greenhouse was 10°C higher (mean 29°C). As predicted, both larval movement and feeding were higher at the warmer temperature, while the likelihood of the preinfected, inoculum larvae dying on the tents was twice as high in the cooler greenhouse. This resulted in increased virus mortality and a higher transmission parameter under cooler conditions. Therefore, we suggest that, contrary to our prediction, the reduced movement of infected larvae at colder temperatures increased the risk of infection in these gregarious insects and had a greater impact on virus transmission than the increased activity of the susceptible larvae in warmer conditions. Long‐term population data from the field, however, show no relationship between temperature and infection levels, suggesting that local changes in virus transmission might not scale up to population infection levels.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3