Spatiotemporal dynamics in freshwater amphipod assemblages are associated with surrounding terrestrial land use type

Author:

Cereghetti Eva12ORCID,Altermatt Florian12ORCID

Affiliation:

1. Department of Aquatic Ecology Eawag, Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

2. Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland

Abstract

AbstractBiological assemblages are the result of dynamic processes that have explicit temporal and spatial dimensions. Although biodiversity patterns can be directly inferred from the structure of these assemblages, an assessment of changes through time and space is needed to understand how organisms initially assembled and how they are responding to local environmental and biotic factors. Small freshwater streams are particularly affected by contemporary anthropogenic activities and biological invasions, yet they are commonly less studied, as studies often focus on lakes and large streams. Here, we conducted a spatially explicit analysis of keystone shredder assemblages across eight years in 12 replicated small tributary streams. In each stream, we monitored multiple sites per kilometer of stream length. By assessing temporal beta diversity dynamics, defined by the gain or loss of species or abundance per species at individual sites, we show that changes in amphipod assemblages occur within the context of the surrounding terrestrial matrix and reflect recent amphipod colonization history. While amphipod composition was mostly constant in streams located in forested catchments, streams embedded in catchments with more extensive agricultural land use displayed more pronounced temporal changes, either driven by colonization of unoccupied upstream locations or by more pronounced but undirected fluctuations in gains and losses of species or abundance per species. Our study thus suggests that agricultural landscapes might destabilize aquatic amphipod assemblages, causing higher temporal changes in community structures and highlighting the vulnerability of aquatic ecosystems to terrestrial land use drivers.

Funder

Federal Office for the Environment

Swiss National Science Foundation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3