Bacterial delivery of therapeutic proteins to the nuclei of cancer cells

Author:

Bloom Shoshana M. K.1ORCID,O'Hare Nicholas1,Forbes Neil S.123ORCID

Affiliation:

1. Department of Chemical Engineering University of Massachusetts Amherst USA

2. Molecular and Cellular Biology Graduate Program University of Massachusetts Amherst USA

3. Institute for Applied Life Sciences University of Massachusetts Amherst USA

Abstract

AbstractTargeting nucleic targets with therapeutic proteins would enhance the treatment of hard‐to‐treat cancers. However, exogenous proteins are excluded from the nucleus by both the cellular and nuclear membranes. We have recently developed Salmonella that deliver active proteins into the cytoplasm of cancer cells. Here, we hypothesized that bacterially delivered proteins accumulate within nuclei, nuclear localization sequences (NLSs) increase delivery, and bacterially delivered proteins kill cancer cells. To test this hypothesis, we developed intranuclear delivering (IND) Salmonella and quantified the delivery of three model proteins. IND Salmonella delivered both ovalbumin and green fluorescent protein to nuclei of MCF7 cancer cells. The amount of protein in nuclei was linearly dependent on the amount delivered to the cytoplasm. The addition of a NLSs increased both the amount of protein in each nucleus and the number of nuclei that received protein. Delivery of Omomyc, a protein inhibitor of the nuclear transcript factor, Myc, altered cell physiology, and significantly induced cell death. These results show that IND Salmonella deliver functional proteins to the nucleus of cancerous cells. Extending this method to other transcription factors will increase the number of accessible targets for cancer therapy.

Funder

National Institutes of Health

U.S. Department of Defense

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3