Mask or Enhance: Data Curation Aiding the Discovery of Piezoresponse Force Microscopy Contributors

Author:

Ligonde Gardy Kevin1ORCID,Williams Kerisha N.2ORCID,Gaponenko Iaroslav13ORCID,Bassiri‐Gharb Nazanin12ORCID

Affiliation:

1. G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332‐0405 USA

2. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332‐0405 USA

3. Department of Quantum Matter Physics University of Geneva Geneva 1211 Switzerland

Abstract

AbstractPiezoresponse force microscopy (PFM) is routinely used to probe the nanoscale electromechanical response of ferroelectric and piezoelectric materials. However, many challenges remain in the interpretation of the recovered signal. Specifically, many non‐ferroelectric contributions affect the measured response, ranging from electrostatics, to charge injection and trapping, and topographic cross‐talk. Recently, machine learning (ML) has been utilized to identify multiple contributors within complex data systems, such as PFM response. A substantial advancement in ML approaches for PFM techniques is offered by dimensional stacking, enabling encoding of physical and/or chemical correlations within the materials' response across different data dimensions spanning varying ranges. However, dimensional stacking requires appropriate scaling for each dimension (before ML analysis) to minimize undesired information loss. Here, the impact of clustering globally and locally scaled parameters in polarization switching experiments via resonant PFM (RPFM) are discussed. Specifically, dimensional stacking of scaled parameters can mask or enhance ferroelectric and non‐ferroelectric behaviors, and aid identification of various physical phenomena contributing to the measured RPFM response. This study highlights the importance of data curation for ML, and its role in identifying signal contributors to scanning probe microscopy (SPM)‐based techniques with multidimensional data, such as resonant and/or spectroscopic SPM.

Funder

Georgia Institute of Technology

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3