Time‐Resolved Photoemission Electron Microscopy on a ZnO Surface Using an Extreme Ultraviolet Attosecond Pulse Pair

Author:

Vogelsang Jan12ORCID,Wittenbecher Lukas2,Mikaelsson Sara2,Guo Chen2ORCID,Sytcevich Ivan2,Viotti Anne‐Lise2ORCID,Arnold Cord L.2ORCID,L'Huillier Anne2ORCID,Mikkelsen Anders2ORCID

Affiliation:

1. Institute of Physics University of Oldenburg Oldenburg 26129 Germany

2. Department of Physics Lund University Lund 22100 Sweden

Abstract

AbstractElectrons photoemitted by extreme ultraviolet attosecond pulses derive spatially from the first few atomic surface layers and energetically from the valence band and highest atomic orbitals. As a result, it is possible to probe the emission dynamics from a narrow 2D region in the presence of optical fields, as well as obtain elemental specific information. However, combining this with spatially‐resolved imaging is a long‐standing challenge because of the large inherent spectral width of attosecond pulses, as well as the difficulty of making them at high repetition rates. Here, this work demonstrates an attosecond interferometry experiment on a zinc oxide (ZnO) surface using spatially and energetically resolved photoelectrons. Photoemission electron microscopy is combined with near‐infrared pump ‐ extreme ultraviolet probe laser spectroscopy and the instantaneous phase of an infrared field is resolved with high spatial resolution. Results show how the core level states with low binding energy of ZnO are well suited to perform spatially resolved attosecond interferometry experiments. A distinct phase shift of the attosecond beat signal is observed across the laser focus which is attributed to wavefront differences between the pump and the probe fields at the surface. This work demonstrates a clear pathway for attosecond interferometry with high spatial resolution at atomic scale surface regions opening up for a detailed understanding of nanometric light‐matter interaction.

Funder

Vetenskapsrådet

Horizon 2020

HORIZON EUROPE European Research Council

Knut och Alice Wallenbergs Stiftelse

Wallenberg Center for Quantum Technology, Chalmers University of Technology

Laserlab-Europe

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3