High Dielectric Constants in BaTiO3 Due to Phonon Mode Softening Induced by Lattice Strains: First Principles Calculations

Author:

Guo Hengkai1,Baker Jack S.23,Wu Wei2ORCID,Choy Kwang Leong1

Affiliation:

1. UCL Institute for Materials Discovery University College London Malet Place London WC1E 7JE UK

2. UCL Department of Physics and Astronomy University College London Gower Street London WC1E 6BT UK

3. Agnostiq Inc. 325 Front St W Toronto ON M5Y 2Y1 Canada

Abstract

AbstractHigh‐dielectric‐constant materials attract much attention due to their broad applications in modern electronics. Barium titanate (BTO) is an established material possessing an ultrahigh dielectric constant; however, a complete understanding of the responsible underlying physical mechanism remains elusive. Here a set of density‐functional‐theory calculations for the static dielectric tensors of barium titanate under strain has been performed. The dielectric constant increases to ≈7300 under strain. The analysis of the computed vibrational modes shows that transverse vibrational mode softening (the appearance of low‐frequency modes) is responsible for this significant increase as driven by the relationship between lattice contribution for the static dielectric constant (k) and vibrational frequency (ω), i.e., . The relevant vibrational mode indicates a large counter‐displacement of Ti ions and O anions, which greatly enhances electrical dipoles to screen the electric field. The calculations not only interpreted experimental data on the high dielectric constants of BTO, where the lattice deformation due to the strains from the grain nanostructure plays an important role, but also pointed to exploring high‐throughput calculations to facilitate the discovery of the advanced dielectric materials. Moreover, the calculations can prove useful for doped BTO, for which local strains fields can be achieved using defect engineering.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3