Toward Memristive Phase‐Change Neural Network with High‐Quality Ultra‐Effective Highly‐Self‐Adjustable Online Learning

Author:

Lim Kian‐Guan1,Go Shao‐Xiang1,Tan Chun‐Chia1,Jiang Yu1,Cai Kui1,Chong Tow‐Chong1,Elliott Stephen R.2,Lee Tae‐Hoon3,Loke Desmond K.1ORCID

Affiliation:

1. Department of Science, Mathematics and Technology Singapore University of Technology and Design Singapore 487372 Singapore

2. Physical and Theoretical Chemistry Laboratory University of Oxford Oxford OX1 3QZ UK

3. School of Materials Science and Engineering Kyungpook National University Daegu 41566 Republic of Korea

Abstract

AbstractMemristive hardware with reconfigurable conductance levels are leading candidates for achieving artificial neural networks (ANNs). However, owing to difficulties in device character design and circuit combination, the ability to perform complicated online‐learning tasks on a memristive network is not well understood. Here, tandem (T) material states are harnessed in a phase‐change memory (PCM) element, i.e., the primed‐amorphous state and the partial‐crystallized state, by utilizing an impetus‐and‐consequent pair pulse through a large degree of configurational ordering, and illustrate the development of an integrated system for achieving in‐memory computing and neural networks (NNs). A correct classification of 96.1% of 10,000 separate test images from the conventional Modified‐National‐Institute‐of‐Standards‐and‐Technology (MNIST) database in the tandem neural‐network (T‐NN) model is achieved, as well as image recognition for 28×28‐pixel pictures. The T‐NN configuration exhibits an in situ learning, with 50% of the elements stuck in the low‐conductance state, and at the same time, maintains an identification accuracy of ≈90%. The structural origin of the large degree of configurational‐ordering‐enhanced improvement in the extent of the conductance uniformity in the T‐based memristive element is revealed by theoretical studies. This work opens the door for attaining a widely relevant hardware system capable of performing artificial intelligence tasks with a large power‐time efficacy.

Funder

Singapore University of Technology and Design

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3