Epidermal Growth Factor Induces the Progeny of Subventricular Zone Type B Cells to Migrate and Differentiate into Oligodendrocytes

Author:

Gonzalez-Perez Oscar123,Romero-Rodriguez Ricardo1,Soriano-Navarro Mario4,Garcia-Verdugo Jose Manuel4,Alvarez-Buylla Arturo1

Affiliation:

1. Department of Neurological Surgery, Brain Tumor Research Center, Institute for Regeneration Medicine, University of California, San Francisco, California, USA

2. Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico

3. Neuroscience Department, CUCS, University of Guadalajara, Guadalajara, Mexico

4. Laboratorio de Morfología Celular, Unidad Mixta CIPF-UVEG, CIBERNED, Spain

Abstract

Abstract New neurons and oligodendrocytes are continuously produced in the subventricular zone (SVZ) of adult mammalian brains. Under normal conditions, the SVZ primary precursors (type B1 cells) generate type C cells, most of which differentiate into neurons, with a small subpopulation giving rise to oligodendrocytes. Epidermal growth factor (EGF) signaling induces dramatic proliferation and migration of SVZ progenitors, a process that could have therapeutic applications. However, the fate of cells derived from adult neural stem cells after EGF stimulation remains unknown. Here, we specifically labeled SVZ B1 cells and followed their progeny after a 7-day intraventricular infusion of EGF. Cells derived from SVZ B1 cells invaded the parenchyma around the SVZ into the striatum, septum, corpus callosum, and fimbria-fornix. Most of these B1-derived cells gave rise to cells in the oligodendrocyte lineage, including local NG2+ progenitors, and premyelinating and myelinating oligodendrocytes. SVZ B1 cells also gave rise to a population of highly-branched S100β+/glial fibrillary acidic protein (GFAP)+ cells in the striatum and septum, but no neuronal differentiation was observed. Interestingly, when demyelination was induced in the corpus callosum by a local injection of lysolecithin, an increased number of cells derived from SVZ B1 cells and stimulated to migrate and proliferate by EGF infusion differentiated into oligodendrocytes at the lesion site. This work indicates that EGF infusion can greatly expand the number of progenitors derived from the SVZ primary progenitors which migrate and differentiate into oligodendroglial cells. This expanded population could be used for the repair of white matter lesions. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

NIH

Goldhirsh Foundation

John G. Bowes research fund

FRABA

CIBERNED and Red de Terapia Celular

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3