HB-EGF and EGF infusion following CNS demyelination mitigates age-related decline in regeneration of oligodendrocytes from neural precursor cells originating in the ventricular-subventricular zone

Author:

Moradi Kaveh,Mitew Stanislaw,Xing Yao LuluORCID,Merson Tobias D.ORCID

Abstract

AbstractIn multiple sclerosis (MS), chronic demyelination initiated by immune-mediated destruction of myelin, leads to axonal damage and neuronal cell death, resulting in a progressive decline in neurological function. The development of interventions that potentiate remyelination could hold promise as a novel treatment strategy for MS. To this end, our group has demonstrated that neural precursor cells (NPCs) residing in the ventricular-subventricular zone (V-SVZ) of the adult mouse brain contribute significantly to remyelination in response to central nervous system (CNS) demyelination and can regenerate myelin of normal thickness. However, aging takes its toll on the regenerative potential of NPCs and reduces their contribution to remyelination. In this study, we investigated how aging influences the contribution of NPCs to oligodendrogenesis during the remyelination process and whether the delivery of growth factors into the brains of aged mice could potentiate the oligodendrogenic potential of NPCs. To enable us to map the fate of NPCs in response to demyelination induced at different postnatal ages,Nestin-CreERT2;Rosa26-LSL-eYFPmice were gavaged with tamoxifen at either 8 weeks, 30 weeks or one year of age before being challenged with cuprizone for a period of six weeks. Using osmotic minipumps, we infused heparin-binding EGF-like growth factor (HB-EGF), and/or epidermal growth factor (EGF) into the cisterna magna for a period of two weeks beginning at the peak of cuprizone-induced demyelination (n=6-8 mice per group). Control mice received artificial cerebrospinal fluid (vehicle) alone. Mice were perfused six weeks after cuprizone withdrawal and the contribution of NPCs to oligodendrocyte regeneration in the corpus callosum was assessed. Our data reveal that although NPC-derived oligodendrocyte generation declined dramatically with age, this decline was partially reversed by growth factor infusion. Notably, co-infusion of EGF and HB-EGF increased oligodendrocyte regeneration twofold in some regions of the corpus callosum. Our results shed light on the beneficial effects of EGF and HB-EGF for increasing the contribution of NPCs to remyelination and indicate their therapeutic potential to combat the negative effects of aging upon remyelination efficacy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3