Landscape‐scale floral resource discontinuity decreases bumble bee occurrence and alters community composition

Author:

Hemberger Jeremy1,Bernauer Olivia M.1,Gaines‐Day Hannah R.1,Gratton Claudio1

Affiliation:

1. Department of Entomology University of Wisconsin‐Madison Madison Wisconsin USA

Abstract

AbstractAgricultural practices and intensification during the past two centuries have dramatically altered the abundance and temporal continuity of floral resources that support pollinating insects such as bumble bees. Long‐term trends among bumble bees within agricultural regions suggest that intensive agricultural conditions have created inhospitable conditions for some species, while other species have maintained their relative abundances despite landscape‐level changes in flower availability. Bumble bee responses to spatiotemporal resource heterogeneity have been explored at the colony and behavioral level, but we have yet to understand whether these conditions drive community structure and ultimately explain the diverging patterns in long‐term species trends. To explore the relationship between landscape‐level floral resource continuity and the likelihood of bumble bee occurrence, we mapped the relative spatial and temporal availability of floral resources within an intensive agricultural region in the US Upper Midwest and related this resource availability with bumble bee species relative abundance. Across the bee community, we found that relative bumble bee occurrence increases in landscapes containing more abundant and more temporally continuous floral resources. Declining species, such as Bombus terricola, exhibited the strongest, positive responses to resource abundance and continuity whereas common, stable species, such as Bombus impatiens, showed no statistical relationship to either. Together with existing experimental evidence, this work suggests that efforts to increase spatiotemporal flower availability, along with overall flower abundance at landscape scales may have positive effects on bumble bee communities in the US Upper Midwest.

Publisher

Wiley

Subject

Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3