In Situ Sprayed Difunctional Gel Avoiding Microenvironments Limitations to Treat Pressure Ulcers

Author:

Shan Jingyang1ORCID,Li Xiuping1,Huang Zhengzheng1,Kong Bin1,Wang Huan2,Ren Lijie1

Affiliation:

1. Department of Neurology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering Shenzhen University Medical School Shenzhen 518060 P. R. China

2. The Eighth Affiliated Hospital of Sun Yat‐Sen University Shenzhen 518033 P. R. China

Abstract

AbstractHow to avoid the microenvironment limitations in the therapeutic process of pressure ulcers is still challenging. The development of a functional gel can kill bacteria and scavenge reactive oxygen species (ROS), which is urgently required in the therapeutic process of pressure ulcers. Herein, an in situ sprayed gel is developed with silver nanoparticles (AgNPs) and polydopamine (PDA) NPs (APG) to obviate microenvironment restrictions in treating pressure ulcers. The gel is constructed by spraying sodium alginate solution and CaCl2 solution. AgNPs serve as an antibacterial agent in the formed gel, which can effectively cause bacterial inactivation and show more than 5 log (>99.999%) bacterial killing efficiency against methicillin‐resistant S. aureus (MRSA), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) in vitro. Meanwhile, PDA NPs serve as the antioxidative agent in the formed gel, which can facilitate the elimination of ROS to address the high ROS problem in wound microenvironment. Based on these features, it is demonstrated through cell and animal experiments that the AgNPs and PDA NPs incorporated gel can realize the effective treatment of MRSA‐infected and hydrogen peroxide (H2O2)‐sensitized pressure ulcers. It is believed that the designed system by a simple spray‐coating approach can provide a new therapeutic strategy in biomedical areas.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3