Pancreatic cancer cell line in responsive hydrogel microcapsules for drug evaluation

Author:

Song Taiyu1,Zhang Hui2,Liu Guangling3,Qiu Yudong1,Wang Huan145ORCID

Affiliation:

1. Department of General Surgery, Institute of Translational Medicine the Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China

2. School of Life Sciences and Technology Southeast University Nanjing China

3. Department of Pediatrics The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China

4. Department of Orthopedics, The Eighth Affiliated Hospital Sun Yat‐Sen University Shenzhen China

5. Department of Biomedical Engineering, School of Medicine Shenzhen University Shenzhen China

Abstract

AbstractDrug therapies are the cornerstone of systemic treatment for pancreatic cancer patients. However, the relative outcome of drug evaluation is often hampered by the complex microenvironment of pancreatic cancer due to the lack of reasonable tumor models. Here, we proposed a novel platform that integrated pancreatic adenocarcinoma cells encapsulated into hydrogel microcapsules for three‐dimensional (3D) tumor cultivation and antitumor agent evaluation. These hydrogel microcapsules contain alginate/poly (N‐isopropyl acrylamide) (alginate/PNIPAM) shells and carboxymethyl cellulose cores, which are generated through the microfluidic electrospray technique. The microcapsules have the feature of rapid response to temperature, by which they can regulate the internal pressure environment. Besides, benefiting from good monodispersity, precise size control, and biocompatibility of these microcapsules, these wrapped tumor cells have the capacity for proliferating spontaneously and forming 3D tumor spheroids with good cell viability. We have demonstrated that pancreatic adenocarcinoma cells encapsulated in the composite microcapsules with different PNIPAM concentrations showed different drug sensitivity, which could be ascribed to the influence of external pressures environment. These results indicate that the tumor spheroids coated in these responsive microcapsules have great potential in the analysis of antitumor drug sensitivity.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Program

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3