Affiliation:
1. School of Engineering and Design Department of Materials Engineering Technical University of Munich Boltzmannstraße 15 85748 Garching Germany
2. Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering Technical University of Munich Ernst‐Otto‐Fischer Straße 8 85748 Garching Germany
Abstract
AbstractWhereas hydrogels created from synthetic polymers offer a high level of control over their stability and mechanical properties, their biomedical activity is typically limited. In contrast, biopolymers have evolved over billions of years to integrate a broad range of functionalities into a single design. Thus, biopolymeric hydrogels can show remarkable capabilities such as regulatory behavior, selective barrier properties, or antimicrobial effects. Still, despite their widespread use in numerous biomedical applications, achieving a meticulous control over the physical properties of macroscopic biopolymeric networks remains a challenge. Here, a macroscopic, DNA‐crosslinked mucin hydrogel with tunable viscoelastic properties that responds to two types of triggers: temperature alterations and DNA displacement strands, is presented. As confirmed with bulk rheology and single particle tracking, the hybridized base pairs governing the stability of the hydrogel can be opened, thus allowing for a precise control over the hydrogel stiffness and even enabling a full gel‐to‐sol transition. As those DNA‐crosslinked mucin hydrogels possess tunable mechanical properties and can be disintegrated on demand, they can not only be considered for controlled cargo release but may also serve as a role model for the development of smart biomedical materials in applications such as tissue engineering and wound healing.
Funder
Bundesministerium für Bildung und Forschung
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献