Light‐Based 3D Printing of Gelatin‐Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model

Author:

Szabó Anna1ORCID,Pasquariello Rolando2ORCID,Costa Pedro F.3,Pavlovic Radmila4,Geurs Indi5ORCID,Dewettinck Koen5,Vervaet Chris6,Brevini Tiziana A. L.7ORCID,Gandolfi Fulvio2ORCID,Van Vlierberghe Sandra1ORCID

Affiliation:

1. Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281 Ghent 9000 Belgium

2. Department of Agricultural and Environmental Sciences University of Milan Via Domenico Trentacoste Milan 2‐20134 Italy

3. Biofabics Lda Rua do Campo Lindo 168 Porto 4200-143 Portugal

4. Protemoics and Metabolomics Facility (ProMeFa) IRCCS San Raffaele Scientific Institute Via Olgettina, 60 Milan 20132 Italy

5. Department of Food Technology, Safety and Health, Food Structure & Function Research Group Ghent University Coupure Links 653 Gent 9000 Belgium

6. Department of Pharmaceutics, Laboratory of Pharmaceutical Technology Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium

7. Department of Veterinary Medicine and Animal Sciences, Laboratory of Biomedical Embryology Università degli Studi di Milano Via Dell'Università 6 Lodi 26900 Italy

Abstract

AbstractTo provide prominent accessibility of fishmeal to the European population, the currently available, time‐ and cost‐extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium‐size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light‐based 3D printing, a gelatin‐methacryloyl‐aminoethyl‐methacrylate‐based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC‐dextran 4 kg mol−1). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing‐based 3D printing of porogen‐containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo‐scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi‐MI) evidence scaffold biocompatibility.

Funder

Hercules Foundation

H2020 Future and Emerging Technologies

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3