Affiliation:
1. School of Data Science University of Virginia Charlottesville VA 22903 United States
2. Department of Mechanical Engineering University of Iowa Iowa City IA 52242 United States
3. Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22903 United States
Abstract
AbstractPredictive simulations of the shock‐to‐detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo‐mechanics of EM during the SDT, both macro‐scale response and sub‐grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock‐initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, a physics‐aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock‐initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub‐grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high‐performance and safer energetic materials.
Funder
National Science Foundation
Subject
General Chemical Engineering,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献