Increasing and fluctuating resource availability enhances invasional meltdown

Author:

Sun Yan1ORCID,Ren Zhi‐Kun12,Müller‐Schärer Heinz13ORCID,Callaway Ragan M.4,van Kleunen Mark56ORCID,Huang Wei2ORCID

Affiliation:

1. College of Resources and Environment Huazhong Agricultural University Wuhan China

2. Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China

3. Department of Biology University of Fribourg Fribourg Switzerland

4. Division of Biological Sciences and Wildlife Biology University of Montana Missoula Montana USA

5. Department of Biology University of Konstanz Konstanz Germany

6. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

Abstract

AbstractExotic plant invaders can promote others via direct or indirect facilitation, known as “invasional meltdown.” Increased soil nutrients can also promote invaders by increasing their competitive impacts, but how this might affect meltdown is unknown. In a mesocosm experiment, we evaluated how eight exotic plant species and eight Eurasian native species responded individually to increasing densities of the invasive plant Conyza canadensis, while varying the supply and fluctuations of nutrients. We found that increasing density of C. canadensis intensified competitive suppression of natives but intensified facilitation of other exotics. Higher and fluctuating nutrients exacerbated the competitive effects on natives and facilitative effects on exotics. Overall, these results show a pronounced advantage of exotics over native target species with increased relative density of C. canadensis under high nutrient availability and fluctuation. We integrate these results with the observation that exotic species commonly drive increases in soil resources to suggest the Resource‐driven Invasional Meltdown and Inhibition of Natives hypothesis in which biotic acceleration of resource availability promotes other exotic species over native species, leading to invasional meltdown.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3