Reforestation of high elevation pines: Direct seeding success depends on seed source and sowing environment

Author:

Hankin Lacey E.12ORCID,Leger Elizabeth A.23ORCID,Bisbing Sarah M.12

Affiliation:

1. Department of Natural Resources and Environmental Science University of Nevada Reno Reno Nevada USA

2. Graduate Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno Reno Nevada USA

3. Department of Biology University of Nevada Reno Reno Nevada USA

Abstract

AbstractForest persistence in regions impacted by increasing water and temperature stress will depend upon species' ability to either rapidly adjust to novel conditions or migrate to track ecological niches. Predicted, rapid climate change is likely to outpace the adaptive and migratory capacity of long‐lived isolated tree species, and reforestation may be critical to species' persistence. Facilitating persistence both within and beyond a species' range requires identification of seed lots best adapted to the current and future conditions predicted with rapid climate change. We evaluate variation in emergent seedling performance that leads to differential survival among species and populations for three high elevation five‐needle pines. We paired a fully reciprocal field common garden experiment with a greenhouse common garden study to (1) quantify variation in seedling emergence and functional traits, (2) ask how functional traits affect performance under different establishment conditions, and (3) evaluate whether trait and performance variation demonstrates local adaptation and plasticity. Among study species—limber, Great Basin bristlecone, and whitebark pines—we found divergence in emergence and functional traits, though soil moisture was the strongest driver of seedling emergence and abundance across all species. Generalist limber pine had a clear emergence advantage as well as traits associated with drought adaptation, while edaphic specialist bristlecone pine was characterized by low emergence yet high early survival once established. Despite evidence for edaphic specialization, soil characteristics alone did not explain bristlecone success. Across species, trait‐environment relationships provided some evidence for local adaptation in drought‐adapted traits, but we found no evidence of local adaptation in emergence or survival at this early life stage. For managers looking to promote persistence, sourcing seed from drier environments is likely to impart greater drought resistance into reforestation efforts through strategies such as greater root investment, increasing the probability of early seedling survival. This research demonstrates, through a rigorous reciprocal transplant experimental design, that it may be possible to select climate‐ and soil‐appropriate seed sources for reforestation. However, planting success will ultimately rely on a suitable establishment environment, requiring careful consideration of interannual climate variability for management interventions in these climate and disturbance‐impacted tree species.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3