Physicochemical characteristics and antioxidant stability of spray‐dried soy peptide fractions

Author:

Akbarbaglu Zahra1,Tamjidi Fardin2ORCID,Sarabandi Khashayar3ORCID,Ayaseh Ali1

Affiliation:

1. Department of Food Science, College of Agriculture University of Tabriz Tabriz Iran

2. Department of Food Science & Engineering, Faculty of Agriculture University of Kurdistan Sanandaj Iran

3. Department of Food Science & Technology, School of Medicine Zahedan University of Medical Sciences Zahedan Iran

Abstract

AbstractThe direct addition of health‐promoting peptides to food products is limited due to their physicochemical instability and bitter taste as well as their bio‐functionality may be influenced by MW. In this study, SPI hydrolysate (SPIH) was Alcalase‐prepared, size‐fractionated (<10, 10–30, and 30–100 kD), and the amino acid composition of peptide fractions determined. The physicochemical properties, morphology, and antioxidant stability of the fractions were also investigated after spray‐drying encapsulation in maltodextrin‐WPC carrier. The two low MW peptide fractions (especially, PF < 10) were more active than intact SPI, SPIH, and high MW peptide fraction in scavenging free radicals and chelating transition metal ions. As compared to the particles containing SPIH, those containing the smallest peptide fraction (PF < 10) had higher solubility and hygroscopicity, lower production yield and wettability, and more wrinkles, indentations and surface roughness. The highest antioxidant stability during spray‐drying was observed for the two low MW peptide fractions, which examined by scavenging of free radicals of DPPH (88%), ABTS (97%), OH (93%) and NO (80%), chelating of iron (88%) and copper (87–90%) ions, reducing power (93%), and total antioxidant activity (90%). This finding reflects more structural and biological stability of the low MW fractions to shear stress and dehydration during spray‐drying, as compared with SPIH. The spray‐drying encapsulated soy peptide fractions may be used as nutraceuticals for the development of functional foods.

Funder

University of Kurdistan Hewlêr

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3