Bottom‐Up Synthesis, Dispersion and Properties of Rectangular‐Shaped Graphene Quantum Dots

Author:

Lavie Julien1,Vu Van Binh2,Medina‐Lopez Daniel1,Dappe Yannick2ORCID,Liu Thomas3,Rondin Loïc3ORCID,Lauret Jean‐Sébastien3ORCID,Latil Sylvain2ORCID,Campidelli Stéphane1ORCID

Affiliation:

1. Université Paris-Saclay CEA CNRS, NIMBE, LICSEN FR-91191 Gif-sur-Yvette France

2. Université Paris-Saclay CEA CNRS, SPEC FR-91191 Gif-sur-Yvette France

3. Université Paris-Saclay ENS Paris-Saclay Centrale Supélec CNRS LuMIn FR-91400 Orsay France

Abstract

AbstractCarbon nanomaterials have attracted the attention of the scientific community for more than 30 years now; first with fullerene, then with nanotubes and now with graphene and graphene related materials. Graphene quantum dots (GQDs) are nanoparticles of graphene that can be synthesized following two approaches, namely top‐down and bottom‐up methods. The top‐down synthesis used harsh chemical and/or physical treatments of macroscopic graphitic materials to obtain nanoparticles, while the second is based on organic chemistry through the synthesis of polycyclic aromatic hydrocarbons exhibiting various sizes and shapes that are perfectly controlled. The main drawback of this approach is related to the low solubility of carbon materials that prevents the synthesis of nanoparticles containing more than few hundreds of sp2 carbon atoms. Here we report on the synthesis of a family of rectangular‐shaped graphene quantum dots containing up to 162 sp2 carbon atoms. These graphene quantum dots are not functionalized on their periphery in order to keep the maximum similarity with nanoparticles of pure graphene. We chose water with sodium deoxycholate surfactant to study their dispersion and their optical properties (absorption, photoluminescence and photoluminescence excitation). The electronic structure of the particles and of their aggregates are studied using Tight‐Binding (TB). We observe that the larger particles (GQD 3 and GQD 4) present a slightly better dispensability than the smaller ones, probably because the larger GQDs can accommodate more surfactant molecules on each side, which helps to stabilize their dispersion in water.

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Drug Discovery,Biochemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A cucurbit[6]uril-based carbon dot for recognizing metal ions and anions in solutions;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3