Building an adaptive dose simulation framework to aid dose and schedule selection

Author:

Hooijmaijers Richard1,Parasrampuria Ridhi2,Marostica Eleonora1,Ferron‐Brady Geraldine2ORCID,Post Teun M.1ORCID,Visser Sandra A. G.2ORCID

Affiliation:

1. Leiden Experts on Advanced Pharmacokinetics and Pharmacodynamics (LAP&P) Leiden The Netherlands

2. GSK Collegeville Pennsylvania USA

Abstract

AbstractEstablishing a dosing regimen that maximizes clinical benefit and minimizes adverse effects for novel therapeutics is a key objective for drug developers. Finding an optimal dose and schedule can be particularly challenging for compounds with a narrow therapeutic window such as in oncology. Modeling and simulation tools can be valuable to conduct in silico evaluations of various dosing scenarios with the goal to identify those that could minimize toxicities, avoid unscheduled dose interruptions, or minimize premature discontinuations, which all could limit the potential for therapeutic benefit. In this tutorial, we present a stepwise development of an adaptive dose simulation framework that can be used for dose optimization simulations. The tutorial first describes the general workflow, followed by a technical description with basic to advanced practical examples of its implementation in mrgsolve and is concluded with examples on how to use this in decision‐making around dose and schedule optimization. The adaptive simulation framework is built with pharmacokinetic, pharmacodynamic (i.e., biomarkers, activity markers, target engagement markers, efficacy markers), and safety models that include evaluations of unexplained interindividual and intraindividual variability and covariate impact, which can be replaced and expanded (e.g., combination setting, comparator setting) with user‐defined models. Subsequent adaptive simulations allow investigation of the impact of starting dose, dosing intervals, and event‐driven (exposure or effect) dose modifications on any end point. The resulting simulation‐derived insights can be used in quantitatively proposing dose and regimens that better balance benefit and adverse effects for further evaluation, aiding dose selection discussions, and designing dose modification recommendations, among others.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3