Fire regime shapes butterfly communities through changes in nectar resources in an Australian tropical savanna

Author:

Leone Julia B.1ORCID,Larson Diane L.2ORCID,Richards Anna E.3ORCID,Schatz Jon3ORCID,Andersen Alan N.4ORCID

Affiliation:

1. Department of Fisheries, Wildlife and Conservation Biology University of Minnesota St. Paul Minnesota USA

2. U.S. Geological Survey Northern Prairie Wildlife Research Center St. Paul Minnesota USA

3. Land and Water CSIRO Berrimah Northern Territory Australia

4. Research Institute for the Environment & Livelihoods Charles Darwin University Darwin Northern Territory Australia

Abstract

AbstractFire‐dependent savanna provides key habitat for butterflies globally, but we know little about how fire regimes, including fire frequency and season, affect them. These impacts are likely to be primarily indirect, through changes in overall habitat structure, the abundance of larval host plants, and/or the provision of nectar resources for adults. We examined the relationships among fire regime, butterfly abundance and diversity, and vegetation structure and floral resources within a long‐term fire experiment near Darwin in the Australian monsoon tropics. We surveyed butterflies and floral resources throughout the 2019–2020 wet season in three replicate plots of each of six experimental treatments that had been operating for 15 years. All plots subject to fire had been burned in the previous dry season. We observed 24 butterfly species and 280 individuals representing all five butterfly families found in Northern Australia. Butterfly abundance was highest under early dry‐season (June) fire regimes (mean = 11.9 individuals per plot survey) compared with a late dry‐season (October) regime (mean = 6.7) and in the long‐term absence of fire (mean = 5.3), and this was correlated with the abundance of floral resources. The distribution of butterflies was also highly associated with floral resources within plots regardless of fire treatment. Butterfly species richness was significantly higher in early dry‐season (mean = 6.8) compared with unburned (mean = 3.3) plots but did not differ between early and late dry‐season (mean = 4.7) plots. Butterfly and floral diversity were similar across all early dry‐season fire treatments regardless of whether they had been burned every 1, 2, 3, or 5 years. Our finding that early dry‐season burning promotes butterfly diversity and abundance by increasing the supply of nectar resources has important implications for biodiversity management more broadly, given that nectar is a critical resource for many animal taxa.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3