Effect of type of polymerization catalyst system on the degradation and stabilization of polyethylenes in the melt state—Part 4: Comparative antioxidant effectiveness on organoleptic extractables

Author:

Allen Norman S.1ORCID,del Teso Sánchez Karmele1,Edge Michele1,Liauw Christopher M.1,Hussain Sajid1,Hall Keith2

Affiliation:

1. School of Natural Sciences Manchester Metropolitan University Chester Street Manchester M1 5GD UK

2. Hall Analytical Laboratories Limited Millbrook Business Centre Floats Road Manchester M23 9YJ UK

Abstract

AbstractSeveral polyethylene resins using Ziegler, metallocene, and Phillips catalyst technologies were examined to obtain more detailed information about the effect of different polymerization catalyst systems on the production of extractable thermo‐oxidative degradation products formed during melt processing cycles. This produces volatile organoleptic components (VOCs and extractable) such as hydrocarbons, alcohols, aldehydes, ketones, and carboxylic acids. Although some of the oxidation products are in‐chain bound, many are produced as free, easily extractable entities or volatile components. The purpose of this study is to identify the nature of the products by gas chromatography–mass spectrometry (GC–MS) and FTIR analysis. The identity of the VOCs formed is necessary to modify the product's quality or establish which are toxic and/or leachable with food products. The results show that the evolution of carbonyl products, nature, and quantity is influenced significantly by the polymer type and catalyst used. Over 300 organoleptics low molar mass degradation products, such as alkane, alkene, carbonyl, and alcohol functionalities were detected by GC–MS analysis coupled with FTIR analysis on hexane extractables. Certain stabilizers can control the generation of certain functionalities and inhibit others. Of importance was the discovery of the relationship between additive activity and structure and inhibition of the formation of specific types of oxidation functionalities to a particular catalyst system.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3