Poly(vinylidene fluoride‐hexafluoropropylene)/ mesoporous graphitic carbon nitride composite membranes for photocatalytic methylene blue degradation and sensing applications

Author:

Sharma Saloni1,Kumar Rajesh2ORCID,Yadav Ram Manohar13ORCID

Affiliation:

1. Department of Physics, VSSD College CSJM University Kanpur Uttar Pradesh India

2. Department of Mechanical Engineering Indian Institute of Technology Kanpur Uttar Pradesh India

3. Department of Physics University of Allahabad Prayagraj Uttar Pradesh India

Abstract

AbstractIn this work, poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP)/mesoporous graphitic carbon nitride (mpg‐C3N4) composite fiber web have been prepared and characterized for photocatalytic methylene blue (MB) degradation and sensing applications. The electrospinning technique, operating at a flow rate of 1 mL/h and a voltage of 15 kV, was utilized to prepare the composite membranes of PVDF‐HFP with the uniform distribution of the mpg‐C3N4. The composite web demonstrated outstanding photocatalytic activity for the degradation of MB, reaching a quick 68% drop in MB concentration in just 45 min. The composite web furthermore worked as a sensor for MB detection. After MB exposure, the film resistance was increased, suggesting its potential as a chemiresistive sensor. The maximum resistivity of PVDF‐HFP/mpg‐C3N4 composites was found to be 90 Ω·m at 2% concentration of MB. The MB molecules' adsorption on the surface of the composite web and the existence of photocatalytic byproducts on the surface may be responsible for this shift in resistance. This dual functionality highlights the adaptability and potential of the PVDF‐HFP/mpg‐C3N4 composite web as a versatile material for environmental sensing and cleanup. This research presents a comprehensive approach to the synthesis, characterization, and evaluation of such flexible membranes for potential applications as self‐cleaning devices and chemiresistive sensor.Highlights PVDF‐HFP/mpg‐C3N4 composite membranes act as an efficient material for MB degradation (68%) with visible light exposure. mpg‐C3N4 plays the role of active material in degradation. PVDF‐HFP/mpg‐C3N4 composite membrane also act as sensors for MB detection. Composite membrane becomes chemiresistive due to notable resistivity changes with MB concentration.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3