Untangling the effects of climate variation and human interference on grassland dynamics in North China

Author:

Ren Hanyu1,Liu Yangyang1ORCID,Wen Zhongming1,Shi Haijing2,Zhou Ronglei1,Wang Zhenqian3,Kareem Hafiz Abdul1,Zhang Wei1

Affiliation:

1. College of Grassland Agriculture Northwest A&F University Yangling Shaanxi China

2. State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation Northwest A&F University Yangling China

3. Department of Physical Geography and Bolin Centre for Climate Research Stockholm University Stockholm Sweden

Abstract

AbstractClimatic and anthropogenic disturbances play pivotal roles in shaping the dynamics of grassland. Quantifying their impacts on grassland variation is essential to ensure sustainable grassland management. In this study, we employed the Thornthwaite Memorial and Carnegie–Ames–Stanford‐approach (CASA) models to investigate the spatiotemporal effects of these two variables on grassland variation in northern China from 2000 to 2016, using the net primary productivity (NPP) as a measure. Our findings reveal that approximately 25.92% of the grassland in northern China experienced degradation, while restored grasslands occupied 45% of the total grassland area. The average grassland actual NPP (ANPP) and human‐induced NPP decreased at rates of −0.60 and −5.62 gC m−2 a−1, respectively. Conversely, potential NPP exhibited an upward trend with an average increase of 2.27 gC m−2 a−1. Furthermore, grassland ANPP showed a projected increase in most parts of northern China. Climate change emerged as the primary driver for grassland restoration in Xinjiang, Qinghai, and Inner Mongolia, leading to an increase of 21582.79 Gg C in grassland NPP. In contrast, human activities were the dominant catalysts for grassland degradation, resulting in a reduction of 51932.3 Gg C in grassland NPP. Human‐induced grassland degradation was ubiquitous in northwest and northeast China. With the exception of slope grassland, climate change primarily influenced the restoration of most grassland types, while human activities were the primary cause of degradation. Our analysis indicated a strong correlation between temperature and grassland degradation, while precipitation played a pivotal role in grassland restoration in northern China. Human interference demonstrated both positive and negative impacts on grassland changes. In conclusion, the increase in precipitation and the implementation of ecological restoration plans have effectively promoted the restoration of grasslands in northern China.

Funder

National Natural Science Foundation of China

Open Research Fund of Key Laboratory of Digital Earth Science

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3