Simulated microgravity‐induced oxidative stress and loss of osteogenic potential of osteoblasts can be prevented by protection of primary cilia

Author:

Miao Lu‐Wei1,Liu Tian‐Zhen1,Sun Yue‐Hong1,Cai Nan1,Xuan Ying‐Ying1,Wei Zhenlong1,Cui Bing‐Bing1,Jing Lin‐Lin2,Ma Hui‐Ping2ORCID,Xian Cory J.3ORCID,Wang Ju‐Fang4,Gao Yu‐Hai1ORCID,Chen Ke‐Ming15ORCID

Affiliation:

1. Fundamental Medical Science Research Laboratories Fundamental Medical Science Research Laboratories, The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China Lanzhou China

2. Department of Pharmacy The 940th Hospital of Joint Logistic Support Force, People's Liberation Army of China Lanzhou China

3. UniSA Clinical and Health Sciences University of South Australia Adelaide SA Australia

4. Gansu Key Laboratory of Space Radiobiology Institute of Modern Physics, Chinese Academy of Sciences Lanzhou China

5. Key Laboratory of Stem Cells and Gene Drugs of Gansu Province Lanzhou China

Abstract

AbstractOxidative stress has been considered to be closely related to spaceflight‐induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity‐induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A‐elicited Ca2+ influx. Supplementation of HC‐067047, a specific antagonist of TRPV4, attenuated microgravity‐induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity‐induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR‐129‐3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity‐induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity‐induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity‐induced oxidative stress and loss of osteogenic potential of osteoblasts.

Publisher

Wiley

Subject

Cell Biology,Clinical Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3