Spawning fish maintains trophic synchrony across time and space beyond thermal drivers

Author:

Opdal Anders Frugård1,Wright Peter J.2,Blom Geir3,Höffle Hannes4,Lindemann Christian15,Kjesbu Olav Sigurd6

Affiliation:

1. Department of Biological Sciences University of Bergen Bergen Norway

2. Marine Scotland Science Aberdeen UK

3. Department of Statistics Directorate of Fisheries Bergen Norway

4. Institute of Marine Research Tromsø Norway

5. Marine Biology Section The Norwegian Institute for Water Research Bergen Norway

6. Institute of Marine Research Bergen Norway

Abstract

AbstractIncreasing ocean temperature will speed up physiological rates of ectotherms. In fish, this is suggested to cause earlier spawning due to faster oocyte growth rates. Over time, this could cause spawning time to become decoupled from the timing of offspring food resources, a phenomenon referred to as trophic asynchrony. We used biological data, including body length, age, and gonad developmental stages collected from >125,000 individual Northeast Arctic cod (Gadus morhua) sampled between 59 and 73° N in 1980–2019. Combined with experimental data on oocyte growth rates, our analyses show that cod spawned progressively earlier by about a week per decade, partly due to ocean warming. It also appears that spawning time varied by more than 40 days, depending on year and spawning location. The significant plasticity in spawning time seems to be fine‐tuned to the local phytoplankton spring bloom phenology. This ability to partly overcome thermal drivers and thus modulate spawning time could allow individuals to maximize fitness by closely tracking local environmental conditions important for offspring survival. Our finding highlights a new dimension for trophic match–mismatch and should be an important consideration in models used to predict phenology dynamics in a warmer climate.

Funder

H2020 Society

Norges Forskningsråd

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3