Toward a statistical validation of brain signatures as robust measures of behavioral substrates

Author:

Fletcher Evan1ORCID,Farias Sarah1,DeCarli Charles1,Gavett Brandon2ORCID,Widaman Keith3,De Leon Fransia4,Mungas Dan1

Affiliation:

1. Department of Neurology University of California, Davis Davis California USA

2. School of Psychological Science University of Western Australia Perth Australia

3. School of Education University of California, Riverside Riverside California USA

4. School of Medicine University of California, Davis Davis California USA

Abstract

AbstractThe “brain signature of cognition” concept has garnered interest as a data‐driven, exploratory approach to better understand key brain regions involved in specific cognitive functions, with the potential to maximally characterize brain substrates of behavioral outcomes. Previously we presented a method for computing signatures of episodic memory. However, to be a robust brain measure, the signature approach requires a rigorous validation of model performance across a variety of cohorts. Here we report validation results and provide an example of extending it to a second behavioral domain. In each of two discovery data cohorts, we derived regional brain gray matter thickness associations for two domains: neuropsychological and everyday cognition memory. We computed regional association to outcome in 40 randomly selected discovery subsets of size 400 in each cohort. We generated spatial overlap frequency maps and defined high‐frequency regions as “consensus” signature masks. Using separate validation datasets, we evaluated replicability of cohort‐based consensus model fits and explanatory power by comparing signature model fits with each other and with competing theory‐based models. Spatial replications produced convergent consensus signature regions. Consensus signature model fits were highly correlated in 50 random subsets of each validation cohort, indicating high replicability. In comparisons over each full cohort, signature models outperformed other models. In this validation study, we produced signature models that replicated model fits to outcome and outperformed other commonly used measures. Signatures in two memory domains suggested strongly shared brain substrates. Robust brain signatures may therefore be achievable, yielding reliable and useful measures for modeling substrates of behavioral domains.

Funder

National Institute on Aging

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3