A novel control method for enhanced performance of single‐phase matrix converters

Author:

Al‐Dori Osamah1ORCID,Vural Ahmet Mete1ORCID

Affiliation:

1. Electrical and Electronics Engineering Department Gaziantep University Gaziantep Turkey

Abstract

AbstractThe conventional topology of direct single‐to‐single‐phase matrix converter (SSMC) is widely adopted in industrial and power system‐related applications owing to its desired features. Current control methods in the literature either limit the voltage transfer ratio (VTR) or prohibit their utilization to drive inductive (RL) loads. In this study, we propose a novel control method that overcomes these limitations by enabling the SSMC to achieve relatively high VTRs while driving RL loads with negligible output voltage spikes and without current commutation problems. Further, the proposed control method improves the overall performance by reducing output voltage and source input current total harmonic distortion (THD) and offering soft‐switching at the commutation instances. The rigidity of the proposed control method over the counterpart methods in the literature is verified through simulation and experimental case studies over a wide range of synthesized output frequencies and modulation indexes. A 530‐W laboratory prototype is built for the experimental study. Results demonstrated the ability of the proposed method in enabling the SSMC to drive an RL load without current commutation issues and with mitigated output voltage spikes while achieving relatively high VTRs and suppressing the output voltage and source input current THD.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3