A Generative and Causal Pharmacokinetic Model for Factor VIII in Hemophilia A: A Machine Learning Framework for Continuous Model Refinement

Author:

Janssen Alexander1ORCID,Smalbil Louk2,Bennis Frank C.34ORCID,Cnossen Marjon H.5ORCID,Mathôt Ron A. A.1ORCID,

Affiliation:

1. Department of Clinical Pharmacology Hospital Pharmacy, Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands

2. Quantitative Data Analytics Group, Department of Computer Science VU Amsterdam Amsterdam The Netherlands

3. Follow Me & Emma Neuroscience Group Emma Children's Hospital, Amsterdam UMC, University of Amsterdam Amsterdam The Netherlands

4. Amsterdam Reproduction and Development Amsterdam The Netherlands

5. Department of Pediatric Hematology Erasmus MC Sophia Children's Hospital, Erasmus University Medical Center Rotterdam Rotterdam The Netherlands

Abstract

In rare diseases, such as hemophilia A, the development of accurate population pharmacokinetic (PK) models is often hindered by the limited availability of data. Most PK models are specific to a single recombinant factor VIII (rFVIII) concentrate or measurement assay, and are generally unsuited for answering counterfactual (“what‐if”) queries. Ideally, data from multiple hemophilia treatment centers are combined but this is generally difficult as patient data are kept private. In this work, we utilize causal inference techniques to produce a hybrid machine learning (ML) PK model that corrects for differences between rFVIII concentrates and measurement assays. Next, we augment this model with a generative model that can simulate realistic virtual patients as well as impute missing data. This model can be shared instead of actual patient data, resolving privacy issues. The hybrid ML‐PK model was trained on chromogenic assay data of lonoctocog alfa and predictive performance was then evaluated on an external data set of patients who received octocog alfa with FVIII levels measured using the one‐stage assay. The model presented higher accuracy compared with three previous PK models developed on data similar to the external data set (root mean squared error = 14.6 IU/dL vs. mean of 17.7 IU/dL). Finally, we show that the generative model can be used to accurately impute missing data (< 18% error). In conclusion, the proposed approach introduces interesting new possibilities for model development. In the context of rare disease, the introduction of generative models facilitates sharing of synthetic data, enabling the iterative improvement of population PK models.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3