Mixed effect estimation in deep compartment models: Variational methods outperform first-order approximations

Author:

Janssen AlexanderORCID,Bennis Frank C.,Cnossen Marjon H.,Mathôt Ron A. A.,Reitsma S. H.,Leebeek F. W. G.,Coppens M.,Fijnvandraat K.,Meijer K.,Schols S. E. M.,Eikenboom H. C. J.,Schutgens R. E. G.,Heubel-Moenen F.,Nieuwenhuizen L.,Ypma P.,Driessens M. H. E.,van Vliet I.,Kruip M. J. H. A.,Polinder S.,Brons P.,van der Meer F. J. M.,Fischer K.,van Galen K.,Collins P. W.,Mathias M.,Chowdary P.,Keeling D.,Lock J.,Hazendonk H. C. A. M.,Preijers T.,de Jager N. C. B.,Schutte L.,Bukkems L. H.,Goedhart M. C. H. J.,Heijdra J. M.,Romano L.,Al Arashi W.,Cloesmeijer M. E.,Koopman S. F.,Mussert C.,

Abstract

AbstractThis work focusses on extending the deep compartment model (DCM) framework to the estimation of mixed-effects. By introducing random effects, model predictions can be personalized based on drug measurements, enabling the testing of different treatment schedules on an individual basis. The performance of classical first-order (FO and FOCE) and machine learning based variational inference (VI) algorithms were compared in a simulation study. In VI, posterior distributions of the random variables are approximated using variational distributions whose parameters can be directly optimized. We found that variational approximations estimated using the path derivative gradient estimator version of VI were highly accurate. Models fit on the simulated data set using the FO and VI objective functions gave similar results, with accurate predictions of both the population parameters and covariate effects. Contrastingly, models fit using FOCE depicted erratic behaviour during optimization, and resulting parameter estimates were inaccurate. Finally, we compared the performance of the methods on two real-world data sets of haemophilia A patients who received standard half-life factor VIII concentrates during prophylactic and perioperative settings. Again, models fit using FO and VI depicted similar results, although some models fit using FO presented divergent results. Again, models fit using FOCE were unstable. In conclusion, we show that mixed-effects estimation using the DCM is feasible. VI performs conditional estimation, which might lead to more accurate results in more complex models compared to the FO method.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3