Affiliation:
1. State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
2. School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sublane Xiangshan Hangzhou Zhejiang 310024 China
Abstract
Comprehensive SummaryDehydration of serine/threonine residues necessitates the activity of a dehydratase enzyme (domain) during the biosynthesis of RiPP. Recently, it was reported that dehydration in the thioviridamide pathway relies on a distinct dehydratase complex that showcases the activities of a phosphotransferase TvaC for serine/threonine phosphorylation and a lyase TvaD for subsequent phosphate elimination. Herein, we report that dehydration reactions in the pathway of lantibiotic cacaoidin involves a similar dehydratase complex, CaoK/CaoY. Remarkably, this dehydratase complex exhibits flexible enzymatic activity and tolerates significant variations in its substrate peptide sequence. By binding with the leader peptide (LP) sequence of precursor peptide CaoA, the dehydration reactions proceed in a directional manner from the C‐terminus of the core peptide (CP) to the N‐terminus, and C‐terminally truncated variants of CP are acceptable. We show that fusing CaoK to CaoY in a 1 : 1 molar ratio enables the resulting enzyme CaoYK to exert enhanced dehydration activity. CaoK binds with the LP to improve its own solubility and to ensure the phosphate transfer activity, while CaoY functions in a manner independently of LP. This work advances our understanding of the dehydration process during cacaoidin formation, and provides useful enzymes and methods for the studies of the rapidly emerging RiPPs.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献