Human footprint and rainfall shape Masai giraffe's habitat suitability and connectivity in a multiple‐use landscape

Author:

Muthiuru Amos C.123ORCID,Crego Ramiro D.45ORCID,Simbauni Jemimah A.1,Muruthi Philip M.2,Waiguchu Grace6ORCID,Lala Fredrick6ORCID,Millington James D. A.3ORCID,Kairu Eunice W.1

Affiliation:

1. Department of Zoological Sciences Kenyatta University Nairobi Kenya

2. African Wildlife Foundation Nairobi Kenya

3. Department of Geography King's College London London UK

4. School of Biological, Earth & Environmental Sciences – Environmental Research Institute University College Cork Cork Ireland

5. Smithsonian National Zoo and Conservation Biology Conservation Ecology Center Front Royal Virginia USA

6. Wildlife Research and Training Institute Naivasha Kenya

Abstract

AbstractGiraffe populations have declined by around 40% in the last three decades. Climate change, poaching, habitat loss, and increasing human pressures are confining giraffes to smaller and more isolated patches of habitats. Masai giraffes (Giraffa tippelskirchi) have been subjected to habitat loss and fragmentation, diseases, poaching, and unpredictable calamities such as wildfires and climate change. In this study, we aimed to identify (1) suitable Masai giraffe habitats within the transboundary landscape of Tsavo‐Mkomazi in Southern Kenya and Northern Tanzania; and (2) key connecting corridors in a multiple‐use landscape for conservation prioritization. We combined Masai giraffe presence data collected through a total aerial survey with moderate resolution satellite data to model habitat suitability at 250 m resolution using species distribution models (SDMs) implemented in Google Earth Engine (GEE). Model accuracy was assessed using area under precision recall curve (AUC‐PR). We then used the habitat suitability index as a resistance surface to model functional connectivity using Circuitscape theory and cost‐weighted distance pairwise methods. Human habitat modification, rainfall, and elevation were the main model predictors of Masai giraffe habitat and corridors. On average, our 10‐fold model fitting attained a good predictive performance with an average AUC‐PR = 0.80 (SD = 0.01, range = 0.79–0.83). The model predicted an area of 15,002 km2 as potential suitable Masai giraffe habitat with over 17% outside protected areas within the landscape. Although Tsavo West National Park formed a key habitat and a key connecting corridor, nonprotected community ranches connecting Tsavo West and Tsavo East National Parks are equally important in maintaining landscape connectivity joining more than two Masai giraffe core areas with low resistance and high permeability. To maintain critical Masai giraffe's habitats and landscape functional connectivity, especially in multiple‐use landscapes, conservation‐compatible land use practices, capacity building, and land use planning should be considered at the outset of any new infrastructure development and land use changes. This modeling shows the potential of utilizing remotely sensed information and ground surveys to guide the management of habitats and their connecting corridors across important African landscapes, complementing existing efforts to identify, conserve, and protect wildlife habitats and their linkage zones.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3