Electrocatalytic oxidation of 5‐hydroxymethylfurfural for sustainable 2,5‐furandicarboxylic acid production—From mechanism to catalysts design

Author:

Jiang Xiaoli12,Li Wei12,Liu Yanxia12,Zhao Lin1,Chen Zhikai1,Zhang Lan3,Zhang Yagang12ORCID,Yun Sining4

Affiliation:

1. School of Materials and Energy University of Electronic Science and Technology of China Chengdu China

2. State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu China

3. Univ Lyon, CNRS INSA‐Lyon Université Claude Bernard Lyon 1 Villeurbanne France

4. School of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China

Abstract

AbstractCatalytic conversion of biomass‐based platform chemicals is one of the significant approaches to utilize renewable biomass resources. 2,5‐Furandicarboxylic acid (FDCA), obtained by an electrocatalytic oxidation of 5‐hydroxymethylfurfural (HMF), has attracted extensive attention due to the potential of replacing terephthalic acid to synthesize high‐performance polymeric materials for commercialization. In the present work, the pH‐dependent reaction pathways and factors influencing the degree of functional group oxidation are first discussed. Then the reaction mechanism of HMF oxidation is further elucidated using the representative examples. In addition, the emerging catalyst design strategies (defects, interface engineering) used in HMF oxidation are generalized, and structure–activity relationships between the abovementioned strategies and catalysts performance are analyzed. Furthermore, cathode pairing reactions, such as hydrogen evolution reaction, CO2 reduction reaction (CO2RR), oxygen reduction reaction, and thermodynamically favorable organic reactions to lower the cell voltage of the electrolysis system, are discussed. Finally, the challenges and prospects of the electrochemical oxidation of HMF for FDCA are presented, focusing on deeply investigated reaction mechanism, coupling reaction, reactor design, and downstream product separation/purification.

Funder

University of Electronic Science and Technology of China

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3