Affiliation:
1. School of Materials and Energy University of Electronic Science and Technology of China Chengdu China
2. State Key Laboratory of Electronic Thin Films and Integrated Devices University of Electronic Science and Technology of China Chengdu China
3. Univ Lyon, CNRS INSA‐Lyon Université Claude Bernard Lyon 1 Villeurbanne France
4. School of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an China
Abstract
AbstractCatalytic conversion of biomass‐based platform chemicals is one of the significant approaches to utilize renewable biomass resources. 2,5‐Furandicarboxylic acid (FDCA), obtained by an electrocatalytic oxidation of 5‐hydroxymethylfurfural (HMF), has attracted extensive attention due to the potential of replacing terephthalic acid to synthesize high‐performance polymeric materials for commercialization. In the present work, the pH‐dependent reaction pathways and factors influencing the degree of functional group oxidation are first discussed. Then the reaction mechanism of HMF oxidation is further elucidated using the representative examples. In addition, the emerging catalyst design strategies (defects, interface engineering) used in HMF oxidation are generalized, and structure–activity relationships between the abovementioned strategies and catalysts performance are analyzed. Furthermore, cathode pairing reactions, such as hydrogen evolution reaction, CO2 reduction reaction (CO2RR), oxygen reduction reaction, and thermodynamically favorable organic reactions to lower the cell voltage of the electrolysis system, are discussed. Finally, the challenges and prospects of the electrochemical oxidation of HMF for FDCA are presented, focusing on deeply investigated reaction mechanism, coupling reaction, reactor design, and downstream product separation/purification.
Funder
University of Electronic Science and Technology of China
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献