Natural polymers as sustainable precursors for scalable production of N/SOx doped carbon material enabling high‐performance supercapacitors

Author:

Abbas Syed Comail123,Hua Zifeng1,Deng Qidu1,Ahommed Md Sohel23,Guo Jiajia1,Huang Hai1,Ma Xiaojuan1ORCID,Cao Shilin1,Ni Yonghao23

Affiliation:

1. College of Materials Engineering, Fujian Agriculture and Forestry University Fuzhou China

2. Department of Chemical Engineering University of New Brunswick Fredericton New Brunswick Canada

3. Department of Chemical and Biomedical Engineering University of Maine Orono Maine USA

Abstract

AbstractNatural polymers‐based carbon electrodes have gained significant research attention for next‐generation portable supercapacitors. Herein, present an environmentally benign and novel approach for the synthesis of N/S‐Ox carbon material derived from natural polymers on gram scale. By capitalizing the synergistic effect of sulfonated lignin and amino‐containing chitosan, this methodology produces a straightforward, low‐budget, and scalable process. The incorporation of sulfonate motifs from lignin contributes to the formation of C‐SOx moieties and multi‐porous architecture with a high surface area. Simultaneously, amino groups in chitosan induce nitrogen doping, enhancing conductivity, and wettability. The resulting N/SOx carbon material exhibits a micro/meso‐porous architecture, facilitating electrolyte diffusion, and demonstrating improved rate capability and pseudocapacitance via Faradaic redox reactions. The N/SOx carbon material showcases notable capacitance (392 F g−1 at 1 Ag−1) as compared with the reported carbon materials form biomass and outstanding cyclic stability (94.8% retention after 5000 cycles). By optimizing various chitosan mass ratios, the most effective N/SOx carbon material SNACM = S/N‐doped activated carbon material (SNACM‐2) was produced using a lignin: chitosan sample ratio of 1:2 for symmetric supercapacitors. Furthermore, the quasi‐solid‐state symmetric supercapacitors based on SNACM‐2 exhibit an excellent specific capacitance of 142 F g−1 at 1 A g−1, coupled with outstanding flexibility. The SNACM‐2 demonstrates a high‐energy density of 9.8 W h kg−1 at a power density of 0.5 kW kg−1. This study presents a successful strategy for transforming low‐valued, eco‐friendly natural polymers into renewable, high‐performance carbon materials for supercapacitors.image

Funder

Canada Research Chairs

Publisher

Wiley

Subject

Materials Science (miscellaneous),Physical and Theoretical Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3