Effects of biochar addition or grass planting on infiltrations into a sandy soil in the Loess Plateau in China

Author:

Wu Lei1234,Xu Liujia14,Yang Hang14,Ma Xiaoyi14

Affiliation:

1. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University Yangling Shaanxi China

2. Blackland Research and Extension Center, Texas A&M AgriLife Research, Texas A&M University Temple TX USA

3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University Yangling Shaanxi China

4. College of Water Resources and Architectural Engineering, Northwest A&F University Yangling Shaanxi China

Abstract

AbstractChanging the soil and underlying surface conditions is a key practice for realizing irrigation on‐site storage and infiltration. However, biochar addition and grass planting effects on soil infiltration and water retention capacity remain unclear. The effects of 0% biochar (C1), 1% biochar (C3), 2% biochar (C4), 3% biochar (C5) under ryegrass and 0% biochar (C2), 1% biochar (C6), 2% biochar (C7) and 3% biochar (C8) under Festuca arundinacea on infiltration behaviours were modelled by using sandy loessial soil columns with ‘bare soil + 0% biochar’ as the control (CK). (i) There is a linear relationship between cumulative infiltration and CK–C8 treatment wetting fronts (R2 ≥ 0.982), which showed an initial rising trend and then tended to gradual, and the influence of different treatments was primarily reflected in the middle and late infiltration stages. (ii) Both biochar and grass planting decreased the soil infiltration capacity compared with that of the CK treatment. A high biochar addition rate was beneficial for inhibiting soil water infiltration and improving water retention ability in sandy loessial soil, however, ryegrass soil infiltrabilities under 1%, 2% and 3% biochar were all stronger than that of F. arundinacea. (iii) The cumulative infiltration fitting effects in different treatments with the Kostiakov, Kostiakov–Lewis, Philip, USDA–NRCS, Horton and Green–Ampt equations were all good, although there were some differences in the infiltration rate curves under the six different fitting equations. This study is helpful in understanding effective sandy loessial soil storage ability for irrigation and efficient water resource usage.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3